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MINIMAL IMMERSIONS OF SURFACES IN
EUCLIDEAN SPHERES
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1. Introduction

The study of isolated singularities for minimal 3-dimensional varieties im-
mersed in Euclidean n-space E™ requires as a first step a characterization of
the tangent cone; the latter is the join of the origin O in R* with a compact
surface (the directrix) immersed in the unit Euclidean (» — 1)-sphere §™~* as
a relatively minimal surface. Since comparatively little is known concerning
such immersions, I propose to devote this as the first of a series of articles
on the subject.

One may consider, for a start, a restricted type of singularity of a minimal
3-variety in E*, namely when this variety is topologically a manifold; in this
case the directrix surface of the tangent cone is a 2-sphere immersed in $*~*
in alocally minimal way. This article is primarily devoted to minimal immer-
sions of 2-spheres in Euclidean (n — 1)-spheres. By this we mean immersions
for which the total area is stationary with respect to variation, and minimal
with respect to variation affecting sufficiently small portions of the surface at
a time. Naturally, some of the conclusions developed here (through Lemma
5.3) apply to the minimal immersion of surfaces of positive genus as well;
results pertaining to these will be collected elsewhere. In the case of minimal
immersions of S* into the Euclidean sphere »$*~! of radius r, the main result
{(Theorem 5.5) is that, if the image under such an immersion does not lie in
any equatorial hyperplane section of #$™~ then # is an odd integer and the
area of the immersed §* is an integral multiple of 2z7% at least equal to

(________n —8— 1 >(47rr"’). There follow some discussion and examples to indicate why

the above estimate is optimal.

2. Riemannian and Riemann surfaces

We denote by X an oriented surface, which, for the purposes of this ar-
ticle, may be assumed to be compact and either real analytic or differentiable.
A differentiable Riemannian metric ds® on 3 together with the given orienta-
tion defines a covering of X by open domains with local (complex) isothermal
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parameters such as w = u + iv (i = v— 1) as well as its complex conjugate
W = u — jv. These parameters are defined up to a local holomorphic and
holomorphically invertible transformation, and characterized by the follow-
ing conditions.

A complex valued function w in a domain U C 2 is an isothermal para-
meter, if and only if

a) The map w: U — Cis a topological imbedding.

b) The metric ds® can be expressed in U by the Hermitian differential
form

2.1) ds* = 2F(w, W) (du* + dv®) = 2F(w, W)|dw]*

where* F(w, W) is a real analytic density, everywhere positive valued.
¢) The real valued, exterior 2-form

(2.2) w = 2F(w, W) du A dv = iF(w, W) dw A dw

is positive with respect to the orientation of 2. Thus 2 with its orientation
and Riemannian metric is equivalent to a Riemann surface with a smoothly
defined area element (2.2).

The tensor algebra bundle on 2 generated by the tangent bundle with the
assigned Riemannian structure and orientation contains a complete set of
irreducible representations of the structure group SO(2). In order to minimize
redundancies, it is convenient to reduce this algebra as follows. First of all
we consider the tensor algebra over the complex rather than the real field.
Now let p, g be two rational numbers, unrestricted as to sign (more generally
‘we could be bizarre and let p and g be complex numbers), such that p — g
is an integer; denote then by E®? the complex line bundle whose elements
are equivalence classes in the set of quadruples (U, w, p, v) where

a) U is an open domain in 2 and p a point in U;

b) w is a local isothermal parameter defined in U, and v a complex num-
ber;

¢ (U, w, p,v) is equivalent to (U’, w’, p/, v') if and only if:

0 p=pcUNU,
A 2 -
ii) v = v| 22 (p) q(_ai.(p))p !
ow’ ow’
aw .| ('a‘{v'—)q-p
= V|—— —_— ,
ow’ (p)’ ow’ (p).

or, if p and g are integers,

! We use the convention that a real- or complex-valued function such as F in a domain
U C C is written as F(w, w) for w € U, when it is not assumed to be holomorphic. The same
<convention holds in the case of vector-valued functions.
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aw
aw’

» Q
v = v( (p)) (———{fw, 'p)) .
ow

Thus, for each (p, g), E?? is a real analytic, complex line bundle over J';
E7?® is a holomorphic line bundle, while E%¢ is an antiholomorphic line
bundle. The tensor product is a pairing of E»¢ and E?"? into E?*?" 2+  so
that E%° is the trivial bundle and the dual of E?¢ can be naturally identified
with E-7-~¢, Finally the weak direct sum of all £7:7 is a bundle of commuta-
tive algebras under addition and tensor multiplication, denoted by E. This
algebra is bigraded by the values of (p, g); E~-°® E>' is the complex tan-
gent bundle ¢,(2) = 7(2) ®,C, where () is the real tangent bundle. The
bundle E admits a (C : R)-semilinear involution (conjugation) mapping E?-¢
onto E¢? in the obvious way, the fixed elements of E?-9@® E«? (if p # g) and
the elements of E?? whose fibre component v is real valued are fixed under
this conjugation and are hence called the real elements of E. For instance the
Riemannian metric (2.1) is a real analytic cross section F, positive valued
everywhere, in the bundle E™*. It is clear that the commutative tensor algebra
thus defined is, for all computational purposes, equivalent to the more cum-
bersome, classical tensor algebra, in the sense that its irreducible spaces un-
der the action of the structural group SO(2) X R* = C* (R* = multiplica-
tive group of real numbers) contain a complete set of irreducible representa-
tions of the group.

3. Connexions

The metric (2.1) on 2 enables us to define a Levi-Civita connexion, i.e. a
first order differential operator 7 on differentiable cross sections of E. More
precisely, the connexion is described axiomatically in terms of a splitting
V = F’ 4+ I of the absolute derivative, where I’ and P’/ are of bidegree re-
spectively (1, 0) and (0, 1) on the bigraded algebra E = 3 E?-¢. These oper-

29

ators are characterized by the following four axioms:
1) The operators F/ and F”* are C-linear derivations; in other words:
(3.1) F(cf) = cFf, where ¢ € C, f a differentiable cross section in E#-¢ (this
implies, here and below, the same relation in terms of either F’ or
V”) ;
(3.2) V(f+ 9 =Vf+ Vg, where f, g are cross sections in E?9;
33 TR =1R3Fg+ FfQ g, where f and g are cross sections, re-
spectively in E»-¢ and E®9".
2) If f is a cross section in E#°, locally described by the complex valued,
differentiable functions v = f(w, w) of local isothermal parameters w, then

of(w, W)

3.4 V'f=odf = P
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3) If f is the conjugate of f, then

(3.5) V'f="f).

4) Finally, for the special cross section F in E®" defining the metric
(2.1), we have the identity
(3.6) VF=0.

It is easy to see that the six conditions (3.1) through (3.6) define /7, /"’
and hence V = P’ + /" uniquely, as follows: if f is a differentiable cross
section in E?¢, locally defined by a differentiable function v = f(w, #) in
terms of a local isothermal parameter w, then

(3.7) pp= (LD S8 PO B) . g, )
and
(3.8) i = (;’_; - qa_k’ggw(w____ﬂ SUAE

The commutator of I’/ and I’/ corresponds to the Ricci identity, which is ex-
pressed as follows :
If f(w, W) represents locally a differentiable cross section in E?:¢, then

[V/’ V//]f — (V/V// _ V//V/)f — (p . q)f(w’ "w') 62 log F(l"’ w)
(3.9) owaw

= (¢ — PKF{w, W) ® f(w, W),

9% log F(w, W)

where K = K(w, W) = — 1
F owow

is the Gaussian curvature of the

metric (2:1).

4. JIsometric immersions

Consider the n-dimensional Fuclidean space E*. We denote by R™ the
Euclidean vector space associated with E*; thus R" can be regarded as the
group of translations of E", or else as the fibre in the tangent bundle of E=.
In conjunction with R* we consider the complex extension, C* = R* ®r C
of R?, regarded as the fibre of the “complexified” tangent bundle of E*. We
extend the orthogonal (inner product) structure from R" both to an orthogonal
and a unitary structure in C* in the following, natural way: if z/ = (2], - - -

<., zp)and 77 = (27, - - -, Z) are two vectors in C”, then the “dot” product
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@ ?

n
is the symmetric bilinear form z'- z” = 3, z.z)/; moreover we denote by 7’
a=1

the complex conjugate of z’
2/ = (ijl,y R z;,) ;

we also need the absolute value (or norm) of a vector z = (2,, - - -, Z,) to be
the square root of the positive definite hermitian form z’- 7, so that

2] =Nz Z = (50,2, Dt

Thus the dot product, conjugation and norm on C* are the invariants
defining the real orthogonal (euclidean) group O(#n) acting on C~.

Consider now the Grassman algebra A(C?) generated by C* over C. If
Z=z A\ -+ Nzpand W=w A - w,are two p-vectors in A(C") we can
extend the O(n)-invariants of C* to A(C”) in the obvious way, by defining
the dot product as the Gramian determinant

Z-W = det (z,-w;),

1<as 8<D

the conjugation map by setting
Z=% N NZps
and the positive valued norm | Z| of Z by means of the Hermitian product
|Z*=Z2-Z.

With these notations, we let X :3 — E” be a differentiable map of a surface
2, as specified in §2, into the Euclidean n-space E*. We describe X locally
in terms of a local isothermal parameter w with respect to the Riemannian
structure induced on X by X; then X can be represented locally by an En-
valued differentiable function® X (w, W) of w. The map is an isometric immer-
sion, if and only if at each point

4.1 Fow,w) = |3X['_ 98X X
@1 0. 7) ,aw ow oW
80X oX . ax aX
4.2 o4 [ 9X ( lying 9% . 9X _ o)
“-2) B aw . \PYIE ST e

where F(w, W) is the coefficient of the Riemannian metric (2.1). we can now
form the successive derivatives of X with respect to w or W either, from the
local, (or analytical) standpoint

2 See footnote 1.



116 EUGENIO CALABI

grtaX

W P, q9=0,1,2,---4)

(4.3) 9759X =

or in the Levi-Civita (or geometrical) sense such as an ordered sequence of
(noncommuting) successive derivations containing, say, p times F’ and g
times //”/ in some given order; in this case we have a partial operator of order
p + g, whose principal part is 323¢X. In the case of isometric immersion,
several identities hold, involving dot products of derivatives of X. For in-
stance, considering the absolute derivatives of both members in either (4.1)
or (4.2), we obtain immediately®

4.4 rx.rv'X=vX.r*X=yp"X.-V*x =0,

showing that all second order covariant derivatives of X are orthogonal to
all first order (and thereby define the second fundamental form).

5. The main theorems

We now make the basic assumptions of the article, namely that the iso-
metric immersion X : £ — R® maps 2 into a Euclidean (n — 1)-dimensional
sphere 75"* of radius r and that the resulting surface in the (n — 1)-sphere
with the induced Riemannian structure is locally a solution of the Plateau
problem. For this purpose we identify E* with R” by the choice of an origin
0; the sphere rS*~! of radius r and center O is the set of real vectors x ¢ R”
satisfying x - x = #%.

Assumptions. We let X' be an oriented surface and X : 3’ — R" an analytic
immersion of X satisfying the following five conditions

1) The image lies in the sphere 75~ of radius 7, i.e.

(5.1) X-X=r at every point of 5.

2) We carry all calculations in terms of the local isothermal coordinate
systems w defined in X by the given orientation and the Riemannian metric
induced by X.

3) The immersion of & in rS$*~* is locally minimal ; this means, in terms

1 P
Fw,®) owow
F*@VF'F"X is everywhere orthogonal to r§*~%, i.e. proportional to the posi-
tion vector X of the image.

4) The surface X is homeomorphic to a 2-sphere.

of X as an immersion in R?, that the curvature vector

3 The 6perations of dot product and Grassmanr multiplication are understood to be
naturally extended from C™ to its tensor product with the bundle E of bigraded temsor
algebras over 3.
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5) Without loss of generality, the immersion X is linearly full, i,e. the
image X(J) is not contained in any Euclidean hyperplane in R*.

Remarks. The analyticity of X can be deduced as a consequence of 3),
provided only that the map be of class ¥ The last two main assumptions
will be used only later, and then the essential role that these assumptions
play will be emphasized.

We draw immediately a couple of elementary conclusions from the first
three of the five basic assumptions.

Lemma 5.1. The mapping X satisfies the equation
5.2) 90X = 'P"X = — r*FX .

Proof. From Assumption 3 we have 86X = 1X for some real valued fun-
ction 2 ; on the other hand we have also, from (5.1),

0= %aé(rz) = %aé(X-X) — 93X -X + 5X - 0X

=1X-X+F=r1+F,

whence 2 = — r~*F, as asserted.

Lemma 5.2. The complex vector subspace of C* spanned by the k’th
order jet of X, at any point p ¢ X and for any positive integer k, is spanned
by the 2k + 1 vectors X, V'?X, V"?X or equivalently X, 6*X and 3°X
(1 < p < k) evaluated at p.

Proof. The linear span over C of the &’th order jet of X can be generated

equivalently by X and the % k(k + 3) partial derivatives of X of order < k,

or by X and the 2%*? — 2 different Levi-Civita derivatives of X of order < k;
at the same time, in view of (5.2) any Levi-Civita derivative of X of order k
in which each of I/ and "’/ appears at least once (or equivalently, any partial

RSP 200, ¢
derivative —————

owrowe
linear combination of X and derivatives of order <k — 1; from this the
conclusion follows immediately.

Until now we have not yet used assumptions 4) or 5), namely that X is
homeomorphic to a sphere, or that X is linearly full. In the next lemma,
however, Assumption 4 plays an essential role.

Lemma 5.3. Under the basic assumptians 1), 2), 3) and 4), the complex
subspace of C* spanned by all the derivatives V'*X (p > 1) at any point of X
is totally isotropic with respect to the dot product, and is orthogonal to X.

Proof. Weset, formally, F’°X = F"°X = X ; we must prove that, for any
two nonnegative integers p, g withp + g > 1,

with min(p, @) > 1 and p + g = k) can be expressed as a
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peX.piX =0.

This identity, for 1 < p 4+ g < 3, is true in the case of arbitrary immersions
X of any surface X into a sphere, with no further assumptions ; this follows
easily from (4.2), (4.4) and (5.1). We shall prove it now for higher values of
P + g, by induction on p + g. Suppose that ’?X .7“X =0 for all p,q
with 1 < p + g < k — 1, for some integer k > 2 ; to prove it for p + g =k,
we distinguish the case where k is even from that where k is odd. If & is odd,
say k =2m + 1 (m > 1), we have

V/mX . V/m-:-1X — %V/(V/mX . V/mX) — 0

and, for any psuchthat 1 < p < m

V/m—pX . V/m+p+1X — (_ l)pV/ (% V/mX . V/mX

+ B (—1prmeeX pmeX) =0,
u=1

proving the induction step for & odd ; we remark that, in this case, we do
not need the assumption 4) that X' is homeomorphic to 5.

If k is even, say k = 2m (m > 1), let 4,, = FV'"X - 7’"X. Then for p + ¢q
= 2m and, without loss of generality, p < g,

PPX 71X = (—1)" P Ay + (= D)™ 2P/ (058 (— DA/ #X - Prmer-iX)
= (= )" ?4,.

This reduces the remainder of the proof to showing that 4, = 0.
First, we calculate VA, . From the definition of 4,,,

V'dy, =2F"V'"™X - 7'™X .

Next, we evaluate F"’F'™X ; using the Ricci-identity (3.9) m — 1 times, we
get

FrpmX — 2}7:;;11,7/;;—1(,7//,7/ _ V/V//) prm-eX 4 V/m—l(V//V/X)
_;__ — rFPm-1X 4 Zm-—l(m _ ‘u)FV/;l—l(KV/m—;lX)

n=1

(5.3)

=F (— r® 4 (’;) K )V”"'IX + (a linear combination of

7'X, .., 71X,
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where K is the Gaussian curvature. From this, and using the induction as-
sumption, we deduce immediately that

V4, =0.

This proves that, in the absence of assumption 4), if X satisfies the induction
assumption F’?X - F’2X = 0 for all p, ¢ <2m, then V"X - V'™X = A, is a
holomorphic cross section in E*™°, i.e., a holomorphic differential of weight
2m. Since 2 is homeomorphic to %, i.e. a compact Riemann surface of genus
zero, the only holomorphic cross section in E?? for any p > 0 is the trivial
one, so that in this case 4, = 0. This completes the proof of the lemma.

Remark. The above lemma and its proof are inspired by H. Hopf’s
analogous argument [1] in the case of closed surfaces of genus 0 immersed
in R® with constant mean curvature.

In what follows, it is useful to introduce the following differential geometric
forms attached to the map X, analogous to the generalized Wronskians for
differentiable curves in E*.

We denote by 77X, for any positive integer k, the following* cross section

in E¥2' @ A5(C™), where k, = _;_k(k + D,

Clearly, T} vanishes at any point pe 2, if and only if F'X, VX, ..., V*X
at p are linearly dependent over the tensor algebra E. Since, by Lemma 5.1
the subspace of C» spamned by the & vectors F'X, F?X, ... P/*X at any
point of X is totally isotropic with respect to the dot product, its dimension-

ality can not exceed -%: thus 77X = 0 as soon as k >—;—.

Lemma 5.4. Under the basic assumptions, emphasizing here Assumption
5), the dimensionality n of the ambient space R™ is odd; more precisely,
n =2m + 1, where m is the highest value for which T, X is not identically
zero.

Proof. Let m denote the highest integer for which T, X =X A - - - A "X
=V'XAN--- AV'™X is not identically zero. We shall prove first that n >
2m + 1. In fact, consider the exterior absolute value F,, of the (2m + 1)-vector

XATXAVPXA - AVPXAV'XN - - AV"™X =X NT, X NT!X,
where T7, = T,,. The square of F,, can be calculated from the Gramian de-
terminant, which involves dot products such as X - X, X - ’?X, X .p’2X,
prrx.prx, VrxX-prX, prrX -peX, ete., (1 < p, g < m). Because of
Lemma 5.3, this Gramian matrix splits into three blocks along the diagonal,
namely X - X @ (F'*X - P X) @ (F"*X - F'<X). Thus we see that

+ See footnote 3.
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Fn=|X| det (7'?X - P"X)

1<p,9<m
(5.5 =r0'XAV?X N -« AV™X)-P'X A --- AV"™X)
=r|T, X2

This shows that, wherever 7, X is not zero, F,, is strictly positive; the latter
is the norm of a (2m + 1)-vector in C*, showing that n > 2m 4+ 1.

We show now that, conversely, # < 2m + 1. Since the immersion X of ¥
is real analytic and its image is not contained in any hyperplane, at each
point of X the linear span of the jet of X of sufficiently high order is n-dimen-
sional. By the definition of m, T, X is identically zero, while 77X is not;
hence at any point p e ¥ where T, X is not zero, J/’»**X lies in complex m-
dimensional subspace with basis F’X, -« -, F’™X evaluated at p. By consider-
ing inductively the vanishing of V’*(T,, .. X)(k = 1,2, - - -) it follows that each
p/m+kX at p lines in the same subspace. Therefore, for any nonnegative %,
the 2m + 2k + 1 vectors X, VX, V'*X (1 < p,g< m + k) are a linear
combination of the 2m + 1 vectors X, V'X, -.., V"X, V"X, ..., F""X.
But the 2m 4+ 2k + 1 vectors span, by Lemma 5.2, the whole (m + k)’th
order jet of X at p. Therefore this jet has, for each &, a linear span of at
most 2m + 1 dimensions. This shows that n < 2m - 1, completing the proof.

We can state and prove now the main theorem of this article.

Theorem 5.5. Let X: 2 — E™ be an immersion of a surface X into E=,
whose image is a locally minimal surface in a sphere rS™* of radius r, and is
not contained in any hyperplane of E*. Then the following conclusions hold ;

i) The area A = A(X) of the image surface is an integer multiple of 2zr.

i) The dimension number n is odd, say h = 2m 4 1 and

(5.6) A24m2(’”;’1)=4nr2<”2g1).

Proof. The proof of the two conclusions depend on certain calculations
on the objects T, X (1 < k < m) defined in (5.4) and on the related quantities

Fo=\X||T.X)* (A<Lk<m,
introduced in (5.5) for the special value k = m. Clearly T;X is a real analytic
cross section over X in ErG+10® . C®, while F, is a nonnegative cross
section in E*»*: where k, = (k :2}' 1) = 3k(k + 1). It is convenient to replace

F, by its norm @, under the Riemannian metric (2.1), since @, is a scalar
function. Thus we are led to consider the sequence of nonnegative real valued
scalars @, (k= 1, 2, - - -), where

(5.7 @y, = F-#®0F,
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For the sake of conformity we also set 75X = 77X identically equal to 1 and
F, = @, equal to the constant r. The following differential recursion formulas
now hold and are easy to verify: For each &k > 1

(5.8) VX =T, X ANV*X,

V/T;‘/X =pPrX APPX N - APEX

(5-9) _— _r..QFX /\ V//zX /\ e /\ V//kX s

and similarly for the complex conjugates.
From the above, we can calculate formally the absolute differentials of

each @, (using k, as an abbreviation for (k ’2*' 1) = $k(k + 1)),

V'@, = rF-*p"(T.X - T!'X)
= rF-5@'T.X -TVX +~ TIX -V'T/X) .

Because of (5.8), (5.9), and since X, by Lemma 5.3, is orthogonal to each
r'#X, T'X-V'T¢ X = 0 identically ; thus

(5.10) 30, = V'®, = rF-*(T,_X A V*"X).-T/X

and similarly 09, = V@, = rF~%T}X - T7/_, X A V"**X). We calculate
now 00Q, = V"'V'®, = P'V"®, as follows :
300, = rF~=2{7"(T,__ X \V*X).T/X + \'T. X%}
=rF*T,_ X ANV"'P*X)-TYX + rF~%|T,_ X NP XP?.

We apply the Ricci identity (3.9) in evaluating the term with F”/f’*+'X, as it
was done in (5.3) for the case F"/F"=X; we get then

T._ XAP'P*'X = F(—r?*+ kLKT.X .
Thus we have

300, = rF=*(— r-? + kK)F, + rF-%|P'T\X}?

(5.11)
= F(— 1 4 kK)Dy + rF=|T}_X A P*IXP .

We now recall the algebraic identity (Lagrange)

T X A PEX]P T, X A PeaXp
. (T;_IX A V/k+]X) . (T;‘/_IX A VNI:X)
® (i X A THX)-(TLX N F0X)
— IT2_1X[2 IT;C-IX A TEX A V”C+1X[2 — Fk—le+1
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and apply it in conjunction with (5.10) and (5.11); one obtains the following
equation

0,050, — 00,00, = F(— r~* + kK)P% + F-%F,_F..,
= F(— 1~ + kK)®: + F®._,D;.,

or, if @, # 0, we obtain the recursion formula

Qk—].QlH—I

(5.12) 85(10g¢k):F( 2

— sz) (@, = D, = 1) .

Since each of the functions @, is real analytic and nonnegative, we see that
either @, is identically zero, or else, by considering any locally defined, real
valued, analytic function ¢ whose Laplacian satisfies

Ap = .12? 850 = 2(kK — r-)

we see that log @, — ¢ is subharmonic; in particular, the zeros of @, can be
at most isolated and, analytically, of (finite) even order. Let 2 denote the
real analytic order of the zero of @, at any p ¢ X and, if @, is not identically
zero, set N, = 2. . We can represent N, analytically as a sum of the
residues of the logarithmic singularities of log @, by the potential theoretic
formula

— 2aN; = $lim | (4log @)w ,
e—~0

I,

where w = IF dw A dw is the element of area, and %, denotes the comple-
ment in 2 of an e-neighborhood of all points where @, becomes zero.
Thus we have, in view of (5.12),

w>0.

lim (r—z — sz)a) — 275Nk — hm Qk—1®k+]
e—~0 e 0 | Qi

According to the Gauss-Bonnet formula, f Kw = 4z, so that, evaluating the

above integrals and taking the limits as ¢ - 0, we obtain the following estim-
ate for the area 4 = fa) of the image X(2):

A = (ks + N4z + lim f Peiiss
e—0 s ¢§

> (ky + §N)4ar®,
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equality holding if and only if @, is not identically zero, while @, ., vanishes
n—1

everywhere; this happens, as we showed, precisely for k = m = , ac-

cording to Lemma 5.4. Thus we have proved the formula for the area A4 of
2 induced by the immersion X,

(5.13) A= (m(m+21)+Nm)4m2= ”22‘1 2P + 22N,

where 2N, is the total multiplicity of zeros of @.,. This completes the proof
of the theorem.

Corollary, Under the same assumptions of the theorem there exists a
nonempty open set of X where the Gaussian curvature K satisfies

(5.14) <2
mm+ Hrt
Proof. Since the area A of the image of X is at least dzm,yr* =
2zm(m + 1)r* and, by the Gauss-Bonnet formula,

J‘Ka)=4r:,
z

the conclusion follows immediately.

The only explicit examples known of minimal immersions of a 2-sphere X
mto »S7-! are those where the Gaussian curvature of the induced metric on
2 is constant.

Theorem 5.6. Let 3 be a 2-sphere with a Riemannian metric with con-
stant curvature K, and let X : 3 —rsn~* C E* (n = 2m + 1 > 3) be an iso-
metric, minimal immersion of X, such that the image is not contained in any
hyperplane of E*. Then

1) The value of K is uniquely determined at the value,

(5.15) Ke——2 .
» m{m+1)r:

ily The immersion X is uniquely determined up to a rigid rotation of
rS$=~1, and the n components of the vector X are a suitably normalized basis
for the spherical harmonics of order m on 2.

Proof. 1If K is constant and X : ¥ — rS»~* an isometric, minimal immer-
sion, the functions @, (k =0, 1, - - -) can be calculated explicitly in a simple
way: from the initial data @, = @, = r and the recursion formula (5.12), we
see that each @, is constant, and hence
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b= oo KEED ),
Dy 2

since each @, is then a positive constant for &k < m = and @,,., =0,

n—1
2
we see immediately that the determination (5.15) of the value of K is both

necessary and sufficient. Therefore there exists an isothermal parameter w
defined on all of X except for one point, such that

F(w, W) = m(m + Dr*(1 + ww)™? .
The immersion function X : 3 — rS»-1 satisfies the equation 33X = — r?FX,
or equivalently, in terms of the Laplace operator 4 = 2F~'33,
4X = —2r*X

thus each component of X is an eigenfunction of 4 (spherical harmonic) cor-
responding to the eigenvalue — 2r-% It is known that on the 2-sphere with
constant curvature K as in (5.15) the eigenvalues of 4 are

= KELD _ 2kEk+D 01,2,
¥ K m(m + P T

and the eigenspace corresponding to each 1, is (2k + 1)-dimensional and
generated as follows : map 3 isometrically onto the Euclidean sphere r,$* C R®

with r,= K-t = ﬁ(—niziﬁr and consider the 2k-+1 linearly independent,

homogeneous polynomials of degree & in the 3 Cartesian coordinates of R®,
that satisfy Laplace’s equation. Their restriction to r,5* are the spherical har-
monics of order k. Letting now & = m, we pick an orthogonal basis for all
of them, and verify that the sum of their squares evaluated at each point of
r,S* is constant; hence they can be normalized so that the sum of their squares
is r*; these are then the 2m + 1 components of the imbedding function X.
This completes the proof of the theorem.

It is natural to ask whether the example given above represents the only
type of minimal immersion® of £ into $*-*. This, however, has not yet been
settled, except in the trivial case m = 1 (n = 3). Even a simplifying assump-
tion that the area A of the image attains its lowest possible value 2m(m 4 1)
- zr’, which is equivalent to saying @,, > 0 everywhere, and hence also each
@, > 0for k< m, and &, = O does not seem to help. To show the diffi-
culty, more explicitly, we consider the apparently easiest, nontrivial case,

5 Added in proof. Since the completion of this paper, this question has been answered
negatively; the details are to appear in a sequel.
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m = 2 (corresponding to n = 5). Since @, = @, = r, we apply (5.12) to cal-
culate each @, by the induction formula

.., 276%_% 35 log O, + r-* — Lk(k + 1)K).

k-1

Thus @, = r(r-?* — K) (implying, incidentally, the condition K < r-2 which,
for other reasons as well is necessary), and
O, =r(r* —Ky(3dlog(r-* —K) + r*—3K).

Thus a metric on $° is compatible with a linearly full, minimal immersion in
rS*, only if K < r~? everywhere, but with equality not holding identically, and

(5.16) dlog (r* — K) = 6K — 2r~2 wherever K < r?;

the strict inequality K < r=? would then be satisfied everywhere, if and only
if the total area of the immersed surface is 12z7*. For m = 2, the problem is.
equivalent to the question whether there are any Riemannian metrics that.
satisfy (5.16) other than the special case with constant curvature K= 1/(3r%.
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